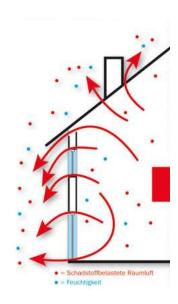

BauphysikerInnen-Treffen 2025 - TU Wien

Wandlüfter - Energieeinsparung und Akustik

Was sind Wandlüfter?

Wandlüfter sind kompakte Lüftungsgeräte, die direkt in die Außenwand eines Gebäudes eingebaut werden. Sie sind häufig mit einer Einrichtung zur Wärmerückgewinnung (WRG) ausgestattet.



Dr. J. Krüger / BauphysikerInnen-Treffen 2025 - TU Wien

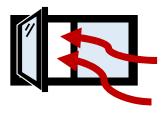
Warum Wandlüfter?

Bestandsbauten alt:

- Außenhülle wenig gedämmt
- Fenster/Hülle nicht luftdicht
- Lüftung erfolgt teilweise unbewusst (Infiltration)
- Nutzer wenig gefordert

Hochschule für Technik Stuttgart – Zentrum für Bauphysik

Warum Wandlüfter?


60% 50% 40% 30% 20% 10% Altbau WSV 1977 WSV 1982 WSV 1995 EnEV 2009 EnEV 2014 2002/2007

Lüftungswärmeverluste als Anteil der gesamten Wärmeverluste nach Vondung et al

Feuchteschaden nach Fenstersanierung

Feuchteschutz sicherstellen Lüftungs-wärmeverluste minimieren

Vorteile von Wandlüftern im Vergleich zur Fensterlüftung

Verbesserung im Vergleich zur Lüftung über geöffnete Fenster bei:

Lärm

Insekten

Einbruch

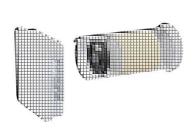
Staub

nutzerunabhängiger Luftwechsel

Fragen bei:

Einfluss auf Schallschutz

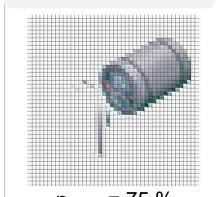
Energieeffizienz



Feuchteschutz

An der HFT untersuchte Wandlüfter

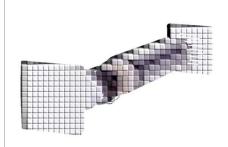
Modell A



 $\eta_{WRG} = 72 \%$ $q_V = 15 - 45 \text{ m}^3/\text{h}$

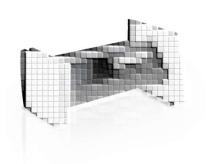
ohne Schalldämmelement

aber mit Wetterschutzhaube


Modell B

 $\eta_{WRG} = 75 \%$ $q_V = 14 - 45 \text{ m}^3/\text{h}$

mit Schalldämmelement


Modell C

 $\eta_{WRG} = 82 \%$ $q_V = 15 - 42 \text{ m}^3/\text{h}$

mit Schalldämmelement

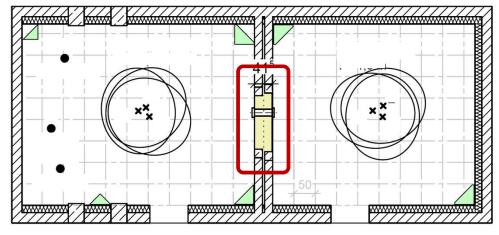
Modell D

 η_{WRG} = 80 %

 $q_V = 17 - 58 \text{ m}^3/\text{h}$

mit kl. & gr. Schalldämmelement

Akustische Messungen am ZfB: Randbedingungen

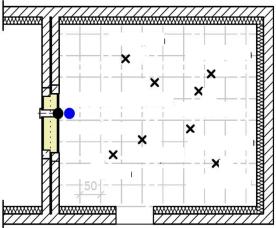

Messung der Schalldämmung

- Nutzung Fenster-Prüfstand
- Schallschutz gegen Außenlärm
- Norm-Schallpegeldifferenz D_{n,e} nach DIN EN ISO 10140-2

Senderaum

Schallquelle

Empfangsraum



x bewegtes Mikrofon

Messung der Schallleistung

- Nutzung Fenster-Prüfstand
- Schallschutz im Gebäude
- Schallleistungspegel L_{WA} nach Vergleichsverfahren der DIN EN ISO 3743-1

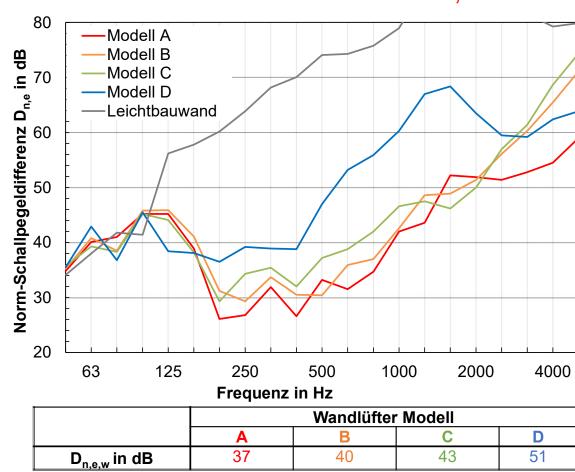
Empfangsraum

- festes Mikrofon
- Lüftungsgerät
- Vergleichsschallquelle

Akustische Messungen am ZfB im Fenster-Prüfstand

- Aufbau einer Leichtbauwand
- 2 Holzrahmen zur Montage der Gipskartonwände
- Senderaum 2-fach beplankt mit GKB 12,5 mm
- Empfangsraum 3-fach beplankt mit GKB 12,5 mm
- Wandabstand 410 mm
- Hohlraum gefüllt mit Mineralwolle
- Messung D_{n.e} zunächst an Wand ohne Loch
- Ziel: hohes D_{n,e} um Dämmung der Lüfter genau zu bestimmen
- später Messung der D_{n,e} der Wandlüfter stets im geöffneten Zustand

Messergebnisse der Norm-Schallpegeldifferenz D_{n,e}

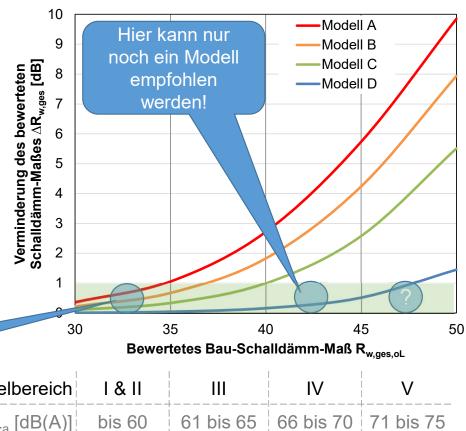

- Messergebnisse zeigen meist gute Dämmung bei hohen Frequenzen > 1000 Hz
- D_{n,e} bei tiefen Frequenzen < 125
 Hz entspricht der Wand ohne Lüfter
- Einbruch bei ca. 400 Hz bestimmt weitestgehend auch das D_{n.e.w}
- Einzahlwert D_{n,e,w} variiert stark zwischen 37 und 51 dB
- Modell D zeigt h

 öchste D_{n,e,w},

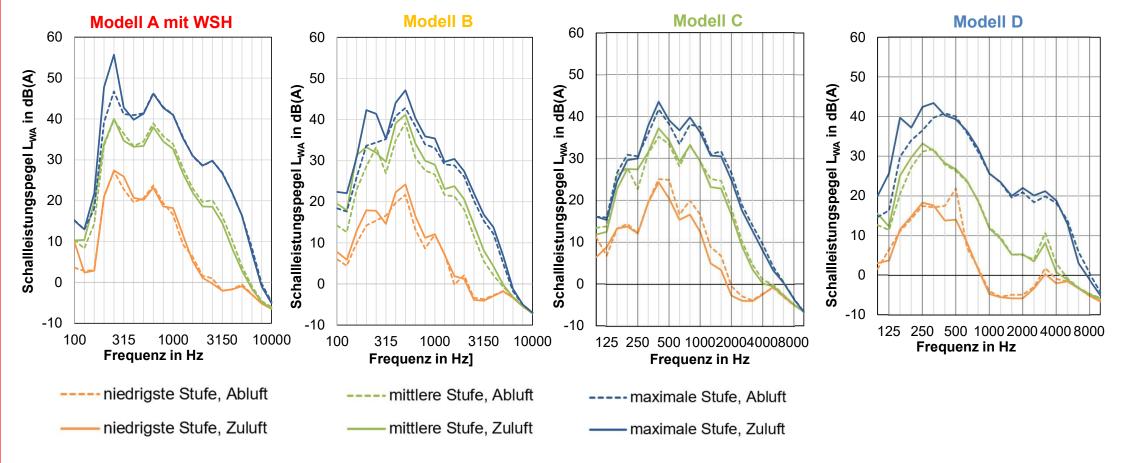
 ben

 ötigt aber auch Kernbohrung

 mit DN 200 statt DN 160 mm
- Frequenzverlauf teilweise ähnlich zu 2-Scheiben-Isolierglasfenster



Einfluss der Wandlüfter mit D_{n.e.w} auf die Fassadendämmung R'_{w.ges}


Schallschutzanforderungen nach DIN 4109-1

- gilt für Aufenthaltsräume in Wohnungen
- abhängig vom Lärmpegelbereich außen La
- erforderliches Bau-Schalldämm-Maß R'w ges
- meist kann Flankenübertragung vernachlässigt werden
- R_{w.ges} der Fassade häufig bestimmt durch die Fenster
- Wandlüfter wirkt wie ein zusätzliches Fenster und verschlechtert damit R_{w.qes}
- beispielhafte Betrachtung für Fassade mit S_s= 21 m²
- hier nur ein Lüfter pro Raum angesetzt
- Annahme: Verschlechterung R_{w.qes} < 1 dB akzeptabel

Messergebnisse der Schallleistung L_{WA} - Spektren

Messergebnisse der Schallleistung L_{WA} - Einzahlwerte

- Zuluft und Abluft getrennt gemessen und über 60 s gemittelt
- Zuluft erwartungsgemäß etwas lauter als Abluftbetrieb
- pegelbestimmend ist meist der Frequenzbereich 200-630 Hz
- Modell D erreicht höchsten Volumenstrom

			Modell A Mit WSH	Modell B	Modell C	Modell D gr. SSE
ste	Volumenstrom q [m³/h]		15	14 b)	15 b)	16 a)
niedrigste Stufe	Schallleistungspegel Lwa [dB(A)]	Zuluft	32,2	28,4	28,1	23,7
		Abluft	31,6	26,2	30,1	25,8
mittlere Stufe	Volumenstrom q [m³/h]		32	32 b)	30 b)	27 a)
	Schallleistungspegel Lwa [dB(A)]	Zuluft	45,0	45,1	41,7	38,0
		Abluft	45,6	42,4	40,9	36,9
maximale Stufe	Volumenstrom q [m³/h]		45	45 b)	42 b)	55 a)
	11 [dD/A/1	Zuluft	57,4	51,3	47,8	49,1
		Abluft	52,5	47,3	46,6	46,6

^{a)} Da die Schallschutzeinlage auf 100 mm gekürzt wurde, wurde der Luftvolumenstrom um 6 % statt den vom Hersteller [31] angegebenen ca. 10 % reduziert.

^{b)} Luftvolumenströme aus den Datenblättern der Hersteller. Eine mögliche Änderung durch die Schalldämmelemente wurde nicht berücksichtigt.

Bewertung der gemessenen Schallleistungen L_{WA}

Umrechnung in Schalldruckpegel im Raum

- nötig für Vergleich mit normativen Anforderungen
- Annahme diffuses Schallfeld nach VDI 2081-1, "wenn das Verhältnis von größter zu kleinster Raumabmessung nicht mehr als 3 beträgt und kein mittlerer Absorptionsgrad einer der sechs Begrenzungsflächen größer als 0,3 ist
- Annahme Absorptionsfläche $A = A_0 = 10 \text{ m}^2$
- dann näherungsweise Umrechnung von L_{WA} in normierten A-bewerteten Schalldruckpegel $L_{AF,n}$ über einfache Formel möglich
- wenn Pendellüfter keine auffälligen Einzeltöne aufweisen und keine besonderen zeitlichen Überhöhungen zeigen, gilt näherungsweise :

$$L_{AF,max,n} \approx L_{AF,n}$$

$$L_{AF,n} \cong L_{WA} + 10 \cdot lg \left(\frac{4 \cdot 1 \text{ m}^2}{10 \text{ m}^2} \right) \cong L_{WA} - 4.0 \text{ dB(A)}$$

Vorschrift für L _{AF,max,n}	Anforderung
DIN 4109-1 Mindestanforderung	≤ 35 dB(A)
DIN 4109-5 erhöhte Anforderungen bei Dauergeräuschen nachts	≤ 30 dB(A)
DEGA 104 EW3 für eine "hohe Zufriedenheit"	< 25 dB(A)

Bewertung der berechneten Schalldruckpegel L_{A,F,n}

- in der geringsten Lüfterstufe halten alle Modelle die akustischen Mindestanforderungen ein
- 2 Lüfter liegen sogar < 25 dBA => "hohe Zufriedenheit" wird erreicht
- in der höchsten Lüftungsstufe liegt der L_{A,F,n} bei allen Modellen > 35 dBA
- d.h. Betrieb in höchster LS nach DIN 4109-1 nicht zulässig...
- im Pendelbetrieb halbiert sich zudem die geförderte Zuluft (Frischluft)
- Frage: Welcher Volumenstrom ist erforderlich?
- zum Glück gibt es auch hierfür eine DIN…☺

			Modell A Mit WSH	Modell B	Modell C	Modell D gr. SSE
SC	Volumenstrom q _V [m³/h]		15	14 ^{b)}	15 b)	16 ^{a)}
niedrigs te Stufe	Schalldruck-	Zuluft	28	24	24	20
nie te (Abluft	28	22	26	22
ø	Volumenstrom q _V	[m³/h]	32	32 b)	30 b)	27 ^{a)}
mittlere	Schalldruckpegel	Zuluft	41	41	38	34
mittle Stufe	L _{AF,n} dB(A)	Abluft	42	38	37	33
la (Volumenstrom q _V [m³/h]		45	45 ^{b)}	42 b)	55 ^{a)}
maximal e Stufe	Schalldruckpegel	Zuluft	53	47	44	45
m e S	L _{AF,n} dB(A)	Abluft	48	43	43	43
	≤ 25 dB(A) ≤ 30 dB(A) > 35 dB(A)					

Hochschule für Technik Stuttgart – Zentrum für Bauphysik

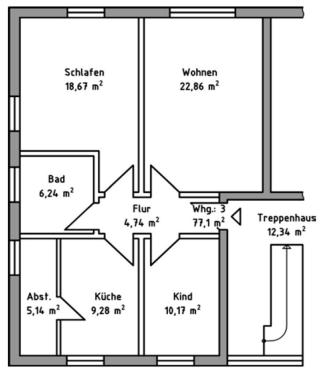
DIN 1946-6: Raumlufttechnik – Teil 6: Lüftung von Wohnungen Lüftungsarten

- Lüftung zum Feuchteschutz => notwendige Lüftung zur Sicherstellung des Bautenschutzes (Feuchte) bei zeitweiliger Abwesenheit der Nutzer und kein Wäschetrocknen
- Reduzierte Lüftung => notwendige Lüftung zur Sicherstellung der gesundheitlichen Mindestanforderungen sowie des Bautenschutzes (Feuchte) bei reduzierter Anwesenheit der Nutzer oder geringerer Raumluftqualität
- Nennlüftung => notwendige Lüftung zur Sicherstellung der gesundheitlichen Anforderungen sowie des Bautenschutzes bei Anwesenheit aller Nutzer (Normalbetrieb)
- Intensivlüftung => zeitweilige Lüftung mit erhöhtem Luftvolumenstrom zum Abbau von Lastspitzen (Lastbetrieb)

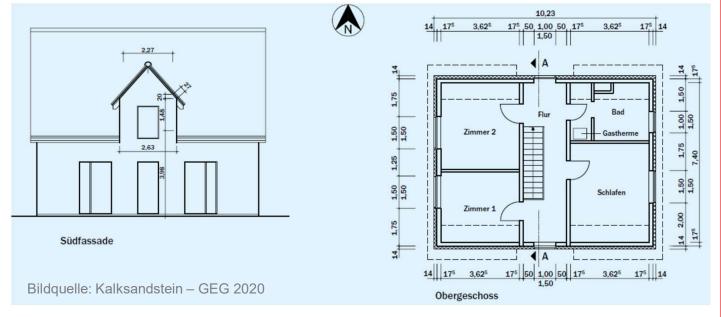
Wie hoch muss der Gesamt-Außenluft-Volumenstrom nach DIN 1946-6 nun für die o.g. Lüftungsarten sein?

DIN 1946-6: Raumlufttechnik – Teil 6: Lüftung von Wohnungen Lüftungsanforderungen

Anforderung an Volumenstrom:


- a) abhängig von Personenzahl => Nennlüftung mind. 15 m³/ h pro Person (nach Tabelle 17)
- b) abhängig von Fläche der Nutzungseinheit A_{NE} => Berechnung nach Gleichung (8):

$$q_{V,ges,NE} = f_{LSt}(-0.002 A_{NE}^2 + 1.15 A_{NE} + 11)$$


Faktor zur Berücksichtigung der Lüftungsstufe f_{Lst}	Wärmeschutz hoch
Lüftung zum Feuchteschutz geringe Belegung (z.B. EFH)	0,2
Lüftung zum Feuchteschutz hohe Belegung (z.B. 3-Zimmer-Whg.)	0,3
Reduzierte Lüftung	0,7
Nennlüftung	1
Intensivlüftung	1,3

DIN 1946-6: Raumlufttechnik / GEG 2020

Fallbeispiele von zwei Gebäuden (MFH + EFH)

Grundriss einer beispielhaften 3-Zimmer-Wohnung mit 77 m² Wohnfläche in MFH Quelle: DIN 4108-8

Ansicht und Grundriss eines beispielhaften EFH mit 214 m² Wohnfläche

Hochschule für Technik Stuttgart – Zentrum für Bauphysik

Lüftung und Feuchteschutz

Fallbeispiele von zwei modernen Gebäuden nach GEG 2020

	3-Zimmer-Wohnung in Mehrfamilienhaus	Freistehendes Einfamilienhaus
Wohnfläche A _{NE} [m ²]	77	214
Luftvolumenstrom zum Feuchteschutz q _{V,ges,NE,FL} [m³/h]	26	33
Luftvolumenstrom für reduzierte Lüftung q _{V,ges,NE,RL} [m³/h]	61	116
Luftvolumenstrom für Nennlüftung q _{V,ges,NE,NL} [m³/h]	88	166

*Wandlüfter – Einsatz z.B. mit $q_{V,ges}$ in min. (8 m³/h) und max. (26 m³/h) Lüftungsstufe

Mit einem Lüfter pro Raum für 2 Personen kann ein Feuchteschutz sichergestellt werden, wenn er nachts mit min. Stufe und tagsüber mit max. Stufe betrieben wird!

Energieeinsparung durch Lüftung mit Wärmerückgewinnung

Fallbeispiele von zwei modernen Gebäuden - Berechnung mit Nennlüftung über Fenster

Nennlüftung	3-Zimmer-Wohnung in Mehrfamilienhaus	Freistehendes Einfamilienhaus	
Wohnfläche A _{NE} [m²]	77	214	
Transmissionswärmeverlust Q _T [kWh/a]	2.480	11.053	
Lüftungswärmeverlust Q _V [kWh/a]	1.755	8.577	
Flächenbezogener jährlicher Lüftungswärmeverlust [kWh/m²a]	23	40	
Anteil des Lüftungswärmeverlusts am gesamten Wärmeverlust [%]	41	44	
Potential zur Reduzierung der Gesamt-Wärmeverluste bei Einsatz einer mechanischen Lüftung mit η _{WRG} ≈ 75 % [%]	31	33	

- sensationell: ca. ein Drittel der gesamten Wärmeverluste einer NE könnten eingespart werden, wenn man von Fensterlüftung auf mechanische Lüftung mit WRG umstellt
- · aber (leider) erfordert dies viele Wandlüfter, die in hoher Stufe laufen müssen und dann recht laut sind
- andererseits heißt Nennlüftung mit Fenster bei n=0,5 h⁻¹ auch: 12 mal komplett durchlüften pro Tag, d.h. ca. alle 2 h

Lüftung, Feuchteschutz, Schallschutz und Energieeinsparung

Gegenüberstellung der Lüftungsmöglichkeiten mit Wandlüftern

Lüftung zum Feuchteschutz

- Ersatz für realistische
 Fensterlüftung (2-3 x täglich)
- wenige Wandlüfter nötig
- sicherer Feuchteschutz
- akzeptabler Schallschutz
- Luftqualität eingeschränkt ggfs. zusätzliche
 Fensterlüftung nötig
- geringe Energieeinsparung

Aufwand vs. Nutzen

Nennlüftung

- Ersatz für normative
 Fensterlüftung (12 x täglich)
- viele Wandlüfter nötig
- hohe Luftqualität und sicherer
 Feuchteschutz
- hohe Energieeinsparung
- Schallschutz eingeschränkt bzw. nur mit Zusatzmaßnahmen möglich

DIN 1946-6: Raumlufttechnik / GEG 2020

Einsatz von Wandlüftern bei Sanierungen im Bestand sowie Neubau nach GEG

- Nennlüftung ist mit Wandlüftern kaum umsetzbar
- ein Feuchteschutz sowie eine Reduzierte Lüftung kann mit realistischer Anzahl von Wandlüftern aber sichergestellt werden
- · Energie-Einsparung fällt dann aber geringer aus und
- der akustische Komfort ist je nach Modell leicht eingeschränkt, aber

DIN 1946-6 fordert:

"Bei der Auslegung ist für die gesamte Nutzungseinheit durch das ventilatorgestützte Lüftungssystem mindestens die Nennlüftung nach Gleichung (8) ... ohne Nutzerunterstützung sicherzustellen. Die Nennlüftung schließt die dauernde Lüftung zum Feuchteschutz (24 h je Tag bei geschlossenen Fenstern) und die Reduzierte Lüftung mit ein. Eine Auslegung ausschließlich für die Lüftung zum Feuchteschutz oder für die Reduzierte Lüftung ist nicht zulässig."

Ist das wirklich sinnvoll?

Bildquelle: Siegenia

Lüftung mit WRG im Vergleich zum COP von Wärmepumpen

Studie ITG Dresden von Schulze Darup & Leppig zu:

- Wohnungslüftung mit Wärmerückgewinnung als nachhaltige Schlüsseltechnologie zur Erreichung der Klimaziele (COP-Äquivalenzstudie)
- Ergebnis 1: die äquivalenten Leistungszahlen der Lüftung mit WRG liegen stets über denen der Wärmepumpe
- Ergebnis 2: die höchsten äquivalenten Leistungszahlen der Lüftung mit WRG werden bei niedrigen Außentemperaturen erreicht
- dies macht die Lüftung mit WRG zu einem natürlichen Komplementärsystem von Wärmepumpen, d.h. eine Kombination ist besonders sinnvoll

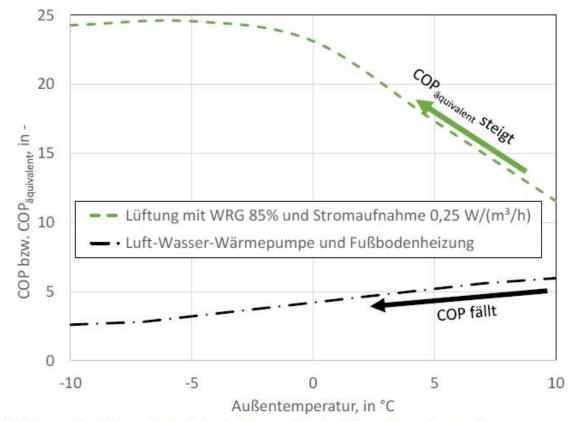


Abbildung 1: Vergleich von äquivalenten Leistungszahlen der Wärmerückgewinnung mit Leistungszahlen COP von Wärmepumpen

Lüftung im Kontext Wärme, Schall und Feuchte

Gestern

- Bestandsbauten mit geringer Wärmedämmung und undichter Gebäudehülle
- hohe Wärmeverluste (Transmission und Lüftung)
- Feuchteschutz auch bei geringer Fensterlüftung durch Infiltration

Heute

- Neubauten mit guter Wärmedämmung und dichter Gebäudehülle
- Wärmeverluste durch Transmission gering, aber durch Fensterlüftung hoch
- Feuchteschutz nur bei entsprechendem Nutzerverhalten

Morgen

- Neubauten mit guter Wärmedämmung und dichter Gebäudehülle
- Wärmeverluste durch Transmission und Lüftung mit WRG gering
- Feuchteschutz und Luftqualität stets sichergestellt

Zusammenfassung

Anwendung von Wandlüftern

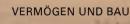
- Einsatz im Neubau und bei Altbau-Sanierung möglich
- Ersatz für traditionelle manuelle Fensterlüftung sowie aufwändige zentrale Lüftung
- erhöhter Komfort durch Automatik sowie Sicherheit gegen Ungeziefer und Diebe

Lüftung und Energieeinsparung

- Nennlüftung erfordert unrealistische Zahl von Lüftern
 - ➤ mit ca. 1 Lüfter pro Raum ist aber Feuchteschutz und Reduzierte Lüftung möglich
- Primär-Energieeinsparung ist selbst bei Reduzierter Lüftung signifikant
 - > dadurch weniger Verbrauch bzw. kleinere Heizungen möglich

Akustik

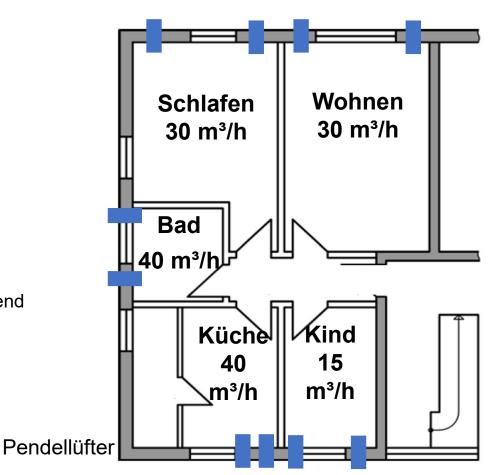
- Schalldämmung ähnlich wie Fenster => reduziert Fassadenschalldämmung
 - ➤ dadurch eher im geringen Außen-Lärmpegelbereich einsetzbar
- Eigengeräusch bei geringster Stufe vernachlässigbar / in höchster Stufe zu laut
 - ➤ dadurch muss der Luftwechsel je nach Anwesenheit gesteuert werden
 - ➤ Weiterentwicklung der Wandlüfter-Technologie sinnvoll



ICH HOFFE, ES WAR INTERESSANT FÜR SIE!

DANKE FÜR IHRE ZEIT, IHRE AUFMERKSAMKEIT... UND IHR VERTRAUEN!

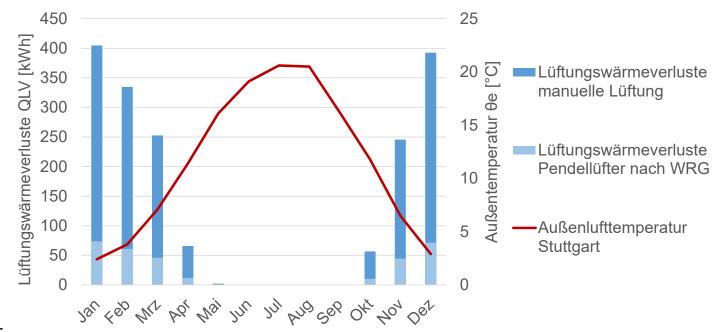
Dieses Projekt wurde unterstützt von:



Beispiel: 3-Zimmerwohnung für 3 Personen

DIN 1946-6 schreibt für ventilatorgestützte Lüftung eine Auslegung nach Nennlüftung vor...

- kritischste Räume: Schlafräume und Wohnzimmer
- min. $q_V = 15 \text{ m}^3/\text{h}$ pro Person => $q_V = 30 \text{ m}^3/\text{h}$
- es sind also mind. 2 Lüfter pro Raum nötig
- dies erhöht L_{WA} und L_{AF} um 3 dB
- weiterhin würde R'_{w,ges} nochmals reduziert
- hoher Aufwand und geringer akustischer Komfort, aber
- alternative Auslegung mit einem Lüfter pro Raum ausreichend zumindest für:
 - Reduzierte Lüftung nur: $q_V = 21 \text{ m}^3/\text{h}$
 - Lüftung zum Feuchteschutz sogar nur: $q_V = 9 \text{ m}^3/\text{h}$

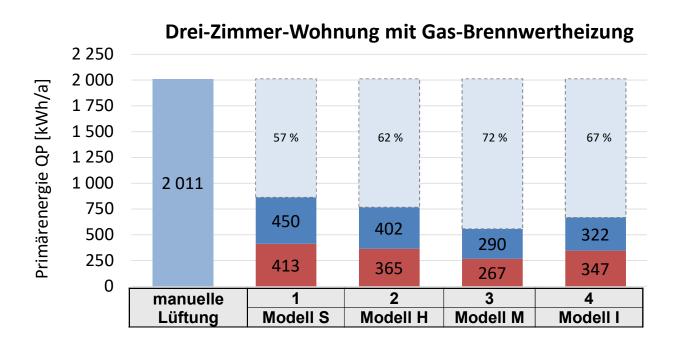


26

Lüftungswärmeverluste für Drei-Zimmer-Wohnung

Annahmen

- Drei-Zimmer-Wohnung mit 3 Personen nach aktuellem GEG-Standard
- V = 192,75 m³, A = 77,1 m²
- Luftwechsel von n = 0,5 h⁻¹ mittels
 Fensterlüftung nach DIN V 18599-10
 für Wohngebäude
- Luftwechsel von n_{mech} = 0,4 h⁻¹ mittels je 2 x Pendellüfter
- Raumlufttemperatur θ_i: 19 °C
- Außenlufttemperaturen θ_e entsprechen den Monatsmittelwerten des TRY17 für Stuttgart
- Wärmebereitstellungsgrade gemäß den Zulassungen der Hersteller der Pendellüfter


Jan Krüger / Wandlüfter 27

Lüftungswärmeverluste für Drei-Zimmer-Wohnung

Drei-Zimmer-Wohnung V = 192,75 m³, A = 77,1 m²		manuelle Lüftung	1 Modell S	2 Modell H	3 Modell M	4 Modell
Luftvolumenstrom q _V m³/h		96	77			
Elektroenergiebedarf Eel	kWh/a	-	229,6	202,6	148,6	192,6
bezogen auf die Nutzfläche	kWh/(m²a)	-	3,0	2,6	1,9	2,5
Lüftungswärmeverluste Q _{LV}	kWh/a	1755,0	393,1	351,0	252,7	280,8
bezogen auf die Nutzfläche	kWh/(m²a)	22,8	5,1	4,6	3,3	3,6
	kWh/a	-	1361,9	1404,0	1502,3	1474,2
Heizwärme-Einsparung	kWh/(m²a)	-	17,7	18,2	19,5	19,1
	%	-	78	80	86	84

Lüftungswärmeverluste p.a. bei manueller Lüftung sowie nach Einbau der Pendellüfter im Wärmerückgewinnungsbetrieb, Elektroenergiebedarf E_{el} der untersuchten Pendellüfter bei ganzjährigem Betrieb und mittlerem Luftvolumenstrom q_V sowie Heizwärme-Einsparung im Vergleich zur manuellen Lüftung

Lüftungswärmeverluste für Drei-Zimmer-Wohnung

Die Einsparung an Primärenergie durch die Nutzung von Pendellüftern ist erheblich!

Primärenergiebedarf Q_P einer Drei-Zimmer-Wohnung bei manueller Lüftung und Lüftung mittels Pendellüfter mit Primärenergie-Einsparpotential bei Nutzung einer Gas-Brennwertheizung